
SHIFTED POISSON STRUCTURES IN REPRESENTATION THEORY

PAVEL SAFRONOV

Abstract. These are notes from lectures given at the summer school on geometric rep-
resentation theory and low-dimensional topology in Edinburgh in June 2019. These notes
explain how shifted Poisson structures naturally appear in geometric representation theory.

Introduction

What do we study? Let X be a scheme over a field k. Recall that it defines a functor

X : CAlg −→ Set

given by X(R) = HomSch(SpecR,X).
We have different kinds of generalized spaces:

commutative algebras sets

groupoids

derived commutative algebras ∞-groupoids

schemes

stacks

∞−stacks

derived stacks

In these lectures we will concentrate on derived stacks. The goals are twofold: introduce
the language of derived algebraic (and symplectic) geometry and explain appearances of
shifted Poisson/symplectic structures in geometric representation theory.

Why stacks? The basic object in geometric representation theory is an algebraic variety
X with a G-action. One may reformulate this data as follows. Consider the quotient stack
X/G. The projection X → pt induces a map X/G → BG = pt/G. Conversely, suppose Y
is a stack with a map Y → BG. Then we may form X = Y ×BG pt. This carries an action
of the group ΩBG = pt×BG pt ∼= G. So, spaces with a G-action are the same as spaces over
BG. The latter perspective turns out to be useful as will be illustrated in these lectures.

Why shifted Poisson structures? Recall that a Poisson structure (a 0-shifted Poisson
structure) on a variety X allows one to consider a deformation quantization of X which can
either mean an associative deformation of O(X), the algebra of global functions on X, or
a deformation of the category QCoh(X), the category of quasi-coherent sheaves. Note that
QCoh(X) is a symmetric monoidal category, but we lose the monoidal structure after the
deformation. If we think of QCoh(X) as a categorification of O(X), then a categorified de-
formation quantization should deform QCoh(X) as a monoidal category (but not necessarily
braided). It turns out that the correct geometric data on X for a categorified deformation
quantization is a 1-shifted Poisson structure.
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Why derived stacks? To define symplectic and Poisson structures on a space, we first
need to define a (co)tangent bundle. Recall that the tangent bundle has something to do
with infinitesimal deformations of a space. For singular spaces or stacks the tangent bundle
itself is not interesting, so instead we will need the tangent complex. The latter captures
not just plain deformations, but also derived deformations, so as test objects we will need
derived commutative algebras.

References.
• Some familiarity with ordinary symplectic and Poisson structures will be assumed,
see e.g. [Can01] and [LPV13].
• A knowledge of the basics of quantum groups may be helpful to understand some
applications of shifted Poisson structures in these lectures, see e.g. [CP94] and [ES02].
• Throughout the notes we will freely use the language of ∞-categories. We refer
to [Lur09] and [Lur16] as foundational texts which use quasi-categories as models
for ∞-categories and to [Gro10] as an introduction to the theory. This language is
indispensable in dealing with higher homotopical structures and descent questions.
• We will work in the framework of derived algebraic geometry, see [TV08] and [GR17,
Part I] for details and [Cal14], [Toë14] and [Toë09] for an introduction. We work over
a base field k of characteristic zero.
• Excellent introductions to shifted symplectic geometry are [Cal14] and [Cal18].
• We will not define shifted Poisson structures in these notes, but we refer to [PV18],
[Saf17a] and [Pri18] for detailed definitions.

1. Derived algebraic geometry

1.1. Prestacks. The basic object we will consider is not a set, but an∞-groupoid (modeled
by a simplicial set or a topological space) which we will call a space. Correspondingly,
instead of categories, we will work with ∞-categories: for x, y ∈ C (some ∞-category),
we have MapC(x, y) which is an ∞-groupoid. Moreover, for an ∞-category C we have its
homotopy category hoC such that HomhoC(x, y) = π0MapC(x, y). So, let S be the∞-category
of ∞-groupoids.

Let CAlg≤0 be the ∞-category of commutative dg algebras concentrated in non-positive
cohomological degrees (connective cdgas). In this ∞-category quasi-isomorphic cdgas are
considered equivalent (i.e. isomorphic).

Definition 1.1. A derived prestack is a functor X : CAlg≤0 → S. The ∞-category of
such functors is denoted by dPSt.

Suppose X is a scheme. A global function on X is the same as a function on each affine
open subset U ⊂ X which are compatible on overlaps. Now, since U = SpecR is affine, a
function is just an element of R. This can be formalized in the following way. Consider the
category AffSch/X whose objects are affine schemes U mapping to X. We have a functor
O : AffSchop

/X → CAlg given by U = SpecR 7→ R. Then the algebra of global functions on X
is limAffSch/X O.

This definition of global functions can be immediately generalized to derived prestacks.
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Definition 1.2. Let X be a derived prestack. The algebra of functions on X is

O(X) = lim
R∈CAlg≤0,f∈X(R)

R,

where we take the limit in the ∞-category of all commutative dg algebras.

In a similar way, we can define the category of quasi-coherent sheaves on a scheme. For
an affine scheme U = SpecR the category of quasi-coherent sheaves if just the category
of R-modules and a quasi-coherent sheaf on a scheme X is a quasi-coherent sheaf on each
open affine subscheme together with an isomorphism on the double overlaps and a coherence
condition on this isomorphism on triple overlaps.

If R ∈ CAlg≤0 is a connective cdga, we consider the ∞-category ModR of (unbounded)
dg R-modules. The homotopy category of ModR is equivalent to the unbounded derived
category of R-modules (which can be presented in terms of homotopically injective modules
following Spaltenstein). For a morphism of connective cdgas g : R → S we get an induced
functor g∗ : ModR → ModS given by induction, i.e. M 7→M ⊗R S.

Remark 1.3. Here and in the future the relative tensor product is taken in the ∞-category
of R-modules. On the level of homotopy category this is is derived tensor product M ⊗L

R S.

Definition 1.4. LetX be a derived prestack. The∞-category of quasi-coherent sheaves
on X is

QCoh(X) = lim
R∈CAlg≤0,f∈X(R)

ModR,

where we take the limit in the ∞-category of ∞-categories.

In other words, we can think of a quasi-coherent sheaf F on X as the following data:
• For any connective cdga R and an element f ∈ X(R) we have an R-module Ff .
• For a pair of connective cdgas R, S together with a morphism g : R→ S, two elements
fR ∈ X(R), fS ∈ X(S) such that X(g)(fR) ∼= fS we have an isomorphism of S-
modules g∗FfR ∼= FfS .
• Further coherences.

Remark 1.5.
(1) For a map g : R → S we have g∗(R) ∼= S. Thus, we have a canonical object OX ∈

QCoh(X) which on an object (R, f ∈ X(R)) is given by R ∈ ModR. We will think
of OX as the structure sheaf of X.

(2) For a map f : X → Y of derived prestacks by functoriality of the limit we obtain the
pullback functor f ∗ : QCoh(Y )→ QCoh(X).

(3) ModR is a symmetric monoidal ∞-category with monoidal structure given by the
relative tensor product over R. Moreover, for a map of connective cdgas g : R → S
the functor g∗ : ModR → ModS is symmetric monoidal. Thus, QCoh(X) inherits
a natural symmetric monoidal structure with OX the unit object and such that
f ∗ : QCoh(Y )→ QCoh(X) is a symmetric monoidal functor for every map f : X → Y
of derived prestacks.

(4) The global sections functor Γ(X,−) : QCoh(X)→ Modk is defined to be

Γ(X,−) = HomQCoh(X)(OX ,−).
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Since QCoh(X) is a symmetric monoidal∞-category, we can talk about dualizable objects
of QCoh(X). These are objects V ∈ QCoh(X) for which there is a dual object V ∨ ∈
QCoh(X), the evaluation and coevaluation maps ev : V ⊗ V ∨ → 1 and coev : 1 → V ∨ ⊗ V
which satisfy the usual identities.

Definition 1.6. Let X be a derived prestack. A perfect complex on X is a quasi-coherent
sheaf F ∈ QCoh(X) which is dualizable. We denote by Perf(X) ⊂ QCoh(X) the full
subcategory of perfect complexes.

Example 1.7. Suppose A ∈ CAlg≤0 is a connective cdga. Then
SpecA : CAlg≤0 −→ S

given by R 7→ MapCAlg≤0(A,R) is a derived prestack. Such derived prestacks are called
derived affine schemes . We have O(SpecA) = A, since the corresponding indexing
category in the limit (i.e. the category of R ∈ CAlg≤0 and f ∈ (SpecA)(R)) has a finite
object given by A and the identity map id ∈ (SpecA)(A). In a similar way, QCoh(SpecA) ∼=
ModA.

By the Yoneda Lemma we may identify MapdPSt(SpecA,X) ∼= X(A) and for a map
f : SpecA→ X the functor f ∗ : QCoh(X)→ QCoh(SpecA) ∼= ModA sends F to f ∗F = Ff .

Example 1.8. LetX : CAlg≤0 → S be a derived prestack. We define its truncation t0(X) : CAlg→
S (an ∞-prestack) to be

t0(X)(R) = X(R).

This defines a functor
t0 : dPSt −→ PSt

from derived prestacks to ∞-prestacks. For instance, t0 SpecR = Spec H0(R).
The functor t0 has a fully faithful right adjoint i : PSt→ dPSt which allows us to consider
∞-prestacks as derived prestacks. For instance, we may consider ordinary schemes as derived
prestacks. From now on the functor i will be implicit. The image of an affine scheme SpecR
(where R is an ungraded commutative algebra) is the derived affine scheme SpecR (where
R is considered as a trivially graded cdga).

For X an ordinary scheme O(X) is the commutative dg algebra whose cohomology is
H•(X,OX), the sheaf cohomology of the structure sheaf of X. hoQCoh(X) is the unbounded
derived category of X.

Example 1.9. Suppose X and Y are derived prestacks. The mapping prestack Map(X, Y )
is defined to be

Map(X, Y )(R) = MapdPSt(X × SpecR, Y ).

Example 1.10. Let G be an affine algebraic group acting on an affine scheme X. The action
defines a simplicial affine scheme

(1) X• =
(
X X ×Goooo X ×G×Goooo

oo · · ·oooo
oooo

)
with the maps given by action and projection. We define X/G ∈ dPSt as the colimit of X•.

Remark 1.11. Wemay first compute the colimit ofX• in PSt, the∞-category of∞-prestacks,
and then apply the embedding i : PSt ↪→ dPSt or apply i first to obtain a simplicial derived
prestack i(X•) and then compute its colimit in dPSt.
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For instance, the classifying prestack BG is defined as

BG = pt/G.

By definition both O and QCoh send colimits of derived prestacks to limits which allows
us to compute them. For instance, O([X/G]) is the limit of the cosimplicial commutative dg
algebra

O(X) // // O(X)⊗ O(G)
////// O(X)⊗ O(G)⊗ O(G)

//////// · · ·

Such a limit can be computed in terms of the total complex which is the complex computing
group cohomology H•(G,O(X)). Similarly, QCoh([X/G]) is the limit of the cosimplicial
∞-category

QCoh(X) //// QCoh(X ×G)
////// QCoh(X ×G×G)

//////// · · ·

An object of this limit is a quasi-coherent sheaf F on X, an isomorphism act∗F ∼= p∗1F
of sheaves on X × G and some further coherences. In other words, F is a G-equivariant
quasi-coherent sheaf on X which suggests that hoQCoh([X/G]) is the G-equivariant derived
category of quasi-coherent sheaves on X (a precise proof is given by applying the Barr–Beck–
Lurie theorem). For example,

QCoh(BG) ∼= Rep(G)

is the ∞-category of complexes of G-representations. Under this equivalence the pullback
along p : pt → BG coincides with the forgetful functor p∗ : QCoh(BG) ∼= Rep(G) → Modk.
The structure sheaf OBG ∈ QCoh(BG) ∼= Rep(G) is the trivial representation k ∈ Rep(G).

Example 1.12. Given a derived prestack X we may construct a derived stack Xst by forcing
étale descent. For instance, we may consider the classifying stack BstG. If C is an algebraic
variety, we may define the moduli stack of G-bundles on C to be

BunG(C) = Map(C,BstG).

We will often use the following property of quotient prestacks.

Lemma 1.13. Suppose G is a group object in derived prestacks and X, Y, Z are derived
prestacks with a G-action and G-equivariant maps X → Z and Y → Z. Then there is an
equivalence

X/G×Z/G Y/G ∼= (X ×Z Y )/G.

Proof. Limits and colimits in functor ∞-categories are computed pointwise, so it is enough
to prove the statement in S. But limits distribute over sifted colimits (such as colimits of
simplicial objects) in S. �

Corollary 1.14. Suppose G is a group object in derived prestacks. Then pt×BG pt ∼= G.
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1.2. Cotangent complex. Let S = SpecR be an affine scheme. Recall that Ω1
S is the

R-module representing derivations. In other words, for any R-module M we have an iso-
morphism

HomR(Ω1
S,M) = Derk(R,M).

Wemay also identify derivations as follows. Define by R[M ] the square-zero extension of R by
M , i.e. the vector space R⊕M with the multiplication (r1,m1)(r2,m2) = (r1r2, r1m2+r2m1).
Then we have an isomorphism

(2) Derk(R,M) ∼= HomCAlg/R(R,R[M ]),

where CAlg/R is the category of commutative algebras with a map to R.
In the derived setting this isomorphism will be taken as the definition of the module of

derivations.

Definition 1.15. Let X be a derived prestack. The cotangent complex is an object
LX ∈ QCoh(X) together with a natural isomorphism

MapModR
(f ∗LX ,M) ∼= MapdPStS/

(SpecR[M ], X)

for every map f : S = SpecR → X, where R is a connective cdga and M ∈ Mod≤0
R a

connective R-module. Here dPStS/ is the ∞-category of derived prestacks with a map from
S.

Note that this universal property determines the cotangent complex of X uniquely if it
exists. The existence boils down to the following two properties:

• For every map f : S = SpecR → X the functor ModR → S given by M 7→
MapdPStS/

(SpecR[M ], X) is representable (by an object we denote LX,f ∈ ModR).
• Consider a map g : S2 = SpecR2 → S1 = SpecR1 of derived affine schemes and
a connective R2-module M . Denote by g∗M the R1-module obtained by restricting
scalars along R1 → R2. We get a natural map SpecR2[M ]→ SpecR1[g∗M ]. Consider
the composite

MapR2
(g∗LX,f ,M) ∼= MapR1

(LX,f , g∗M)
∼= MapdPStS1/

(SpecR1[g∗M ], X)

→ MapdPStS2/
(SpecR2[M ], X)

∼= MapR2
(LX,f◦g,M).

By the Yoneda Lemma we get a morphism LX,f◦g → g∗LX,f of R2-modules and we
assume it is an isomorphism.

Assuming the above two properties on X, the cotangent complex LX is defined so that
f ∗LX = LX,f for f : SpecR→ X.

Remark 1.16. If we consider X as an∞-prestack, we only allow R andM to be concentrated
in degree 0. Therefore, the universal property only determines the zeroth cohomology of the
cotangent complex LX , i.e. the cotangent sheaf Ω1

X .

Example 1.17. LetX and Y be derived prestacks and consider the mapping prestack Map(X, Y ).
Let f : X×SpecR→ Y defining an R-point of Map(X, Y ). Suppose Γ(X, f ∗TY ) is a perfect
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R-module for any R and f . Then Map(X, Y ) admits a perfect cotangent complex such that
f ∗TMap(X,Y )

∼= Γ(X, f ∗TY ).

For a large class of derived prestacks the cotangent complex exists. We will not define
derived Artin stacks locally of finite presentation, but a recurring example in these notes will
be the quotient (pre)stack X/G of a finite type scheme X by an affine algebraic group G.

Theorem 1.18. Suppose X is a derived Artin stack. Then it admits a cotangent complex
LX . If X is locally of finite presentation, then LX is moreover a perfect complex.

Definition 1.19. SupposeX is a derived prestack which admits a perfect cotangent complex
LX ∈ Perf(X). The tangent complex is the dual object TX = L∨X ∈ Perf(X).

For a morphism f : X → Y of derived prestacks one may similarly define a relative cotan-
gent complex LX/Y ∈ QCoh(X) by considering derived prestacks over Y . From the universal
property of the cotangent complex one may construct the pullback map f ∗LY → LX .

The computation of the cotangent complex is often facilitated by the following two state-
ments.

Recall that if C is an ∞-category with a zero object 0 ∈ C (an object which is both initial
and final), then a fiber sequence x→ y → z in C is a pullback square

x //

��

y

��
0 // z

Theorem 1.20. Suppose f : X → Y is a morphism of derived prestacks which admit cotan-
gent complexes. Then there exists a relative cotangent complex LX/Y ∈ QCoh(X) and a fiber
sequence

f ∗LY −→ LX −→ LX/Y .

Theorem 1.21. Suppose

X

��

f // Y

��
Z // W

is a pullback diagram of derived prestacks which admit cotangent complexes. Then f ∗LY/Z ∼=
LX/Z.

Example 1.22. Let X be a smooth scheme considered as a derived prestack (see example 1.8).
Then LX ∈ QCoh(X) is equivalent to the vector bundle Ω1

X concentrated in cohomological
degree 0.

Example 1.23. LetX = SpecR be a derived affine scheme (more generally, a derived Deligne–
Mumford stack). Then LX ∈ QCoh(X) ∼= ModR is connective, i.e. it is concentrated in
cohomological degrees ≤ 0.



8 PAVEL SAFRONOV

Example 1.24. Let G be an affine algebraic group and consider X = BG with the projection
map p : pt→ BG. By corollary 1.14 we have a pullback diagram

G
f //

��

pt

��
pt // BG

By theorem 1.21 we have f ∗Lpt/BG
∼= LG/pt, where Lpt/BG ∈ Modk is simply a chain complex.

But LG/pt
∼= g∗ ⊗ OG, so Lpt/BG

∼= g∗. By theorem 1.20 we have a fiber sequence

p∗LBG −→ Lpt −→ Lpt/BG.

Since Lpt = 0, this implies that p∗LBG
∼= g∗[−1]. Recall that QCoh(BG) ∼= Rep(G) and

p∗ : QCoh(BG) → QCoh(pt) = Modk is the forgetful functor. Thus, LBG ∈ QCoh(BG) ∼=
Rep(G) is a G-representation whose underlying complex is g∗[−1]. With some more work
one may show that this is in fact the shifted coadjoint representation.

Example 1.25. Let X be a derived prestack and V ∈ QCoh(X) a quasi-coherent sheaf. The
total space of V is the derived prestack which sends R ∈ CAlg≤0 to the space of pairs of a
point f ∈ X(R) and an element s of theR-module f ∗V . For instance, ifX admits a cotangent
complex, we define the cotangent stack T∗X to be the total space of LX ∈ QCoh(X) and
the n-shifted cotangent stack T∗[n]X to be the total space of LX [n] ∈ QCoh(X).

1.3. Exercises.
(1) Suppose G is an affine algebraic group and X an affine scheme equipped with a

G-action.
(a) Identify

lim
(
O(X) //// O(X)⊗ O(G)

////// O(X)⊗ O(G)⊗ O(G)
//////// · · ·

)
∼= eq

(
O(X) // // O(X)⊗ O(G)

)
where both limits are taken in the category of commutative algebras.

(b) Identify

eq
(
O(X) //// O(X)⊗ O(G)

)
∼= O(X)G

with the subset of G-invariants in O(X).
(c) Denote the three maps X ×G×G→ X ×G by

act1(x, g1, g2) = (xg1, g2)

m23(x, g1, g2) = (x, g1g2)

p12(x, g1, g2) = (x, g1).

Consider the category Desc(X,G) whose objects are pairs (F, f) consisting of a
quasi-coherent sheaf F on X and an isomorphism f : act∗F

∼−→ p∗1F on X × G
satisfying p∗12(f) ◦ act∗1(f) = m∗23(f). Show that Desc(X,G) is equivalent to the
category of G-equivariant sheaves on X.
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(d) (*) Consider a cosimplicial category

QCoh(X) // // QCoh(X ×G)
////// QCoh(X ×G×G)

//////// · · ·

i.e. a pseudofunctor ∆→ Cat from the category of simplices to the bicategory of
categories. Show that the pseudolimit of this cosimplicial category is equivalent
to Desc(X,G).

(2) Prove corollary 1.14.
(3) Construct the isomorphism (2).
(4) Suppose f : X → Y is a morphism of derived prestacks which admit cotangent com-

plexes LX and LY respectively. Use the universal property to construct the pullback
map f ∗LX → LY .

(5) Let G be an affine algebraic group and X a scheme with a G-action. Denote by
p : X → X/G the natural projection map. Find p∗LX/G.

2. Shifted symplectic structures

In this section we define shifted symplectic structures following [Pan+13; Cal+17].

2.1. Differential forms. Recall that if S = SpecR is a derived affine scheme, it has a
cotangent complex LR ∈ Mod≤0

R which satisfies the universal property of definition 1.15. In
particular,

MapModR
(LR,LR) ∼= MapCAlg/R

(R,R[LR]).

Under this equivalence the identity map id : LR → LR corresponds to a universal derivation
r 7→ (r, ddRr), where

ddR : R→ LR
is the de Rham differential .

We will now explain how to extend it to the algebra of differential forms.

Definition 2.1. A graded mixed cdga is a graded commutative dg algebra

A =
⊕
n∈Z

A(n)

equipped with a square-zero derivation ε : A(n) → A(n + 1)[1]. Denote by CAlggr,ε the
∞-category of graded mixed cdgas.

Note that a graded mixed cdga has two gradings:
• The cohomological grading (which we simply call the degree).
• The external grading (which we call the weight), so that elements in A(n) have pure
weight n.

It also has two differentials:
• The cohomological differential d of degree 1 and weight 0.
• The mixed structure ε of degree 1 and weight 1.

Definition 2.2. Let R be a connective cdga. Its de Rham algebra is a graded mixed
cdga DR(R) ∈ CAlggr,ε such that for any graded mixed cdga A ∈ CAlggr,ε we have a natural
isomorphism

MapCAlg(R,A(0)) ∼= MapCAlggr,ε(DR(R), A).
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The universal property of the de Rham algebra looks similar to the universal property of
the cotangent complex, so the following statement should come as no surprise.
Theorem 2.3. Let R be a connective cdga. There is an equivalence of graded cdgas

SymR(LR[−1]) ∼= DR(R).

Under this equivalence the mixed structure R→ LR corresponds to the de Rham differential
ddR.

Remark 2.4. The map SymR(LR[−1]) → DR(R) is constructed as follows. Setting A =
DR(R) in the universal property we obtain a morphism of cdgas R → DR(R)(0). Post-
composing it with the mixed structure we obtain a derivation R → DR(R)(1)[1], i.e. a
morphism of R-modules LR[−1] → DR(R)(1). This uniquely extends to a morphism of
graded cdgas Sym(LR[−1])→ DR(R).

From now on we simply denote the whole mixed structure on DR(R) by ddR. We may
extend the definition of the de Rham algebra from derived affine schemes to general derived
prestacks by directly copying definitions 1.2 and 1.4.
Definition 2.5. Let X be a derived prestack. Its de Rham algebra is the graded mixed
cdga

DR(X) = lim
R∈CAlg≤0,f∈X(R)

DR(R),

where the limit is taken in the ∞-category CAlggr,ε.
Taking the degree zero part we obtain the definition of O(X), so we have

DR(X)(0) ∼= O(X) ∼= Γ(X,OX).

Now suppose X admits a cotangent complex LX ∈ QCoh(X). Then we may consider
the graded cdga Γ(X, Sym(LX [−1])) (note that there is no a priori mixed structure on this
graded cdga). For every map f : SpecR → X from a derived affine scheme we have a
pullback map

f ∗ : Γ(X, Sym(LX [−1])) −→ SymR(LR[−1]) ∼= DR(R)

by using the pullback map f ∗LX → LR. These pullback maps are compatible with maps of
derived affine schemes, so by the universal property of the limit we obtain a map
(3) Γ(X, Sym(LX [−1])) −→ DR(X)

of graded cdgas.
Theorem 2.6 (PTVV). Suppose X is a derived Artin stack. Then the map (3) is an
equivalence.

Thus, for a nice class of derived prestacks we can think of the de Rham algebra as
Γ(X, Sym(LX [−1])) equipped with the de Rham differential ddR.
Definition 2.7. Let X be a derived prestack. A p-form of degree n on X is a d-closed
element of DR(X) of weight p and degree p + n. A closed p-form of degree n on X is a
collection of elements ωp, ωp+1, . . . of DR(X), where ωk has weight k and degree p+ n, and
such that

(d + ddR)(ωp + ωp+1 + . . . ) = 0.
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Remark 2.8. The equation (d + ddR)(ωp + ωp+1 + . . . ) = 0 splits according to weights as
follows:

dωp = 0

ddRωp + dωp+1 = 0

· · ·
In other words, a closed p-form of degree n consists of a p-form ωp of degree n and the data
of ωp being coherently ddR-closed.

We denote by Ap(X,n) the space of p-forms of degree n and by Ap,cl(X,n) the space of
closed p-forms of degree n. For example, a path from α to β in Ap(X,n) is given by an
element h of weight p and degree p+ n− 1 such that

α− β = dh.

Similarly, a path from α = αp + . . . to β = βp + . . . in Ap,cl(X,n) is given by a formal power
series h = hp + . . . such that

αk − βk = dhk + ddRhk−1.

2.2. Quotient stacks. Let X be a smooth scheme and G an affine algebraic group acting
on X. We will be interested in the de Rham algebra DR(X/G) of the quotient prestack
X/G. By definition X/G is given by the colimit of the simplicial scheme (1) and DR(−)
sends colimits to limits. Therefore, we may identify

DR(X/G) ∼= lim
(

DR(X) //// DR(X)⊗DR(G)
////// · · ·

)
This complex is known as the Čech model of equivariant cohomology. We will now

introduce a simpler model which is more convenient for computations. Denote by a : g →
Γ(X,TX) the infinitesimal action map. Pick a basis {ei} of g and let {ei} be the dual basis
of g∗.

Definition 2.9. Let X be a smooth scheme and G an affine algebraic group acting on X.
The Cartan model is the graded mixed cdga

DRCartan(X/G) = (Sym(g∗[−2])⊗DR(X))G,

where g∗[−2] is in weight 1 and the cohomological differential d is given by eiιa(ei)

For the following statement, see [Beh04, Lemma 12].

Theorem 2.10. Suppose X is a smooth scheme and G is a reductive algebraic group acting
on X. Then we have an equivalence of graded mixed cdgas

DR(X/G) ∼= DRCartan(X/G).

Example 2.11. Let G be a reductive algebraic group and consider DR(BG). By theorem 2.10
we have

DR(BG) ∼= (Sym(g∗[−2]))G

with the trivial mixed structure and the cohomological differential. So, elements of weight
p are concentrated in cohomological degree 2p. Therefore, for n < p the spaces Ap,cl(BG, n)
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and Ap(BG, n) are contractible, i.e. the unique (closed) p-form of degree n is the zero form.
For n = p we have

Ap,cl(BG, p) ∼= Ap(BG, p) ∼= Symp(g∗)G.

2.3. Symplectic structures. Let X be a smooth scheme of dimension 2d. Recall that a
symplectic structure on X is given by a closed two-form ω on X which is nondegenerate.
Let us also recall that nondegeneracy can be phrased in the following two equivalent ways:

(1) ωd ∈ Γ(X,∧d(T∗X)) is a nonvanishing section (i.e. a volume form).
(2) The map ω] : TX → T∗X given by v 7→ ιvω is an isomorphism of vector bundles.
We have already defined the notion of a closed two-form on a derived prestack (defini-

tion 2.7). For a general derived prestack there may not be a number d such that ∧d(LX) is
a line bundle, so the first definition of nondegeneracy is problematic. However, the second
definition of nondegeneracy extends immediately.

Let X be a derived Artin stack locally of finite presentation and ω ∈ A2(X,n) a two-form
of degree n. By theorem 2.6 (and this is exactly the reason for the assumptions on X) we
get that

ω ∈ Γ(X, Sym2(LX [−1]))[n+ 2] ⊂ Γ(X,L⊗2
X )[n] ∼= Hom(TX ,LX [n]).

We denote the image of ω under this map by ω] : TX → LX [n].

Definition 2.12. Let X be a derived Artin stack locally of finite presentation. An n-
shifted symplectic structure is a closed two-form ω ∈ A2,cl(X,n) of degree n on X such
that ω] : TX → LX [n] is a quasi-isomorphism.

Example 2.13. Let X be a smooth scheme. Then LX = T∗X is concentrated in degree 0,
so we can only have a quasi-isomorphism TX

∼= T∗X [n] if n = 0. The space A2,cl(X, 0)
parametrizes power series ω = ω2 + . . . , where ω2 if a two-form of degree 0. By degree
reasons ωk = 0 for k > 2 and so A2,cl(X, 0) is isomorphic to the set of closed two-forms.
The nondegeneracy condition on a 0-shifted symplectic structure is then manifestly the same
as the second definition of nondegeneracy for ordinary symplectic structures. In this sense
shifted symplectic structures provide a generalization of the classical notion of a symplectic
structure.

Example 2.14. Let G be a reductive algebraic group and conisder X = BG. We have
LBG

∼= g∗[−1] and TBG
∼= g[1], so a quasi-isomorphism TBG

∼= LBG[n] is only possible for
n = 2. Closed two-forms on BG of degree 2 are the same as elements c ∈ Sym2(g∗)G, i.e.
G-invariant symmetric bilinear pairings on g. The nongeneracy condition on the shifted
symplectic strucutre is that the map ω] : TBG → LBG[2], i.e. the map g → g∗ given by
v 7→ c(v,−), is an isomorphism. In other words, the correspond closed two-form on BG of
degree 2 is nondegenerate iff c is a nondegenerate pairing.

Example 2.15. Let X be a derived Artin stack locally of finite presentation. Then by the-
orem 1.18 it admits a perfect cotangent complex LX ∈ Perf(X) whose dual is the tangent
complex TX ∈ Perf(X). Let us consider the n-shifted cotangent stack p : T∗[n]X → X (see
example 1.25); it is also a derived Artin stack locally of finite presentation.

The pullback map p∗LX → LT∗[n]X on the cotangent complex gives rise to a map

Γ(T∗[n]X, p∗LX) −→ Γ(T∗[n]X,LT∗[n]X).
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In turn, we may identify

Γ(T∗[n]X, p∗LX) ∼= Γ(X,LX ⊗ Sym(TX [−n]))

which has a canonical element coev ∈ LX ⊗ TX (i.e. the canonical copairing) of degree n.
Its image in Γ(T∗[n]X,LT∗[n]X) gives rise to a one-form λ on T∗[n]X of degree n known as
the Liouville one-form (the tautological one-form on the shifted cotangent stack). Then
ω = ddRλ is a closed two-form on T∗[n]X of degree n. It is shown in [Cal19] that it is in fact
nondegenerate, i.e. it defines an n-shifted symplectic structure.

Example 2.16. Let G be an affine algebraic group and consider the classifying prestack BG.
We have LBG

∼= g∗[−1] (the shifted coadjoint representation), so T∗[1](BG) ∼= g∗/G. We thus
get a 1-shifted symplectic structure on g∗/G. We will relate the 1-shifted symplectic structure
on g∗/G to the Kirillov–Kostant–Souriau Poisson structure on g∗ in the next section.

2.4. Lagrangian structures. Let (X,ω) be a smooth symplectic scheme and L ↪→ X a
smooth closed subscheme. Recall that L is an isotropic subscheme if ω|L = 0. L is called
a Lagrangian subscheme if, in addition, 2 dim(L) = dim(X). To generalize it to derived
prestacks we will give an equivalent characterization of Lagrangian subschemes.

Suppose L is an isotropic subscheme. Since ω|L = 0, the composite

TL −→ (TX)|L
ω]−→ (T∗X)|L −→ T∗L

is zero. Let NL/X = coker(TL → TX |L) be the normal bundle. Then from the above
observation we get a map NL/X → T∗L. Nondegeneracy of ω implies that this map is injective.
But an injective map of vector bundles is an isomorphism iff they have the same rank, i.f.
iff dim(X) − dim(L) = dim(L). Thus, an isotropic subscheme L ⊂ X is Lagrangian if
NL/X → T∗L is an isomorphism. Equivalently, the sequence

0 −→ TL −→ TX |L −→ T∗L −→ 0

is exact.

Definition 2.17. Let f : L → X be a morphism of derived prestacks where X is equipped
with a closed two-form ω of degree n. An n-shifted isotropic structure on f is a nullho-
motopy of f ∗ω ∈ A2,cl(L, n).

In other words, if we write ω = ω2+. . . , then an n-shifted isotropic structure on f : L→ X
is a power series h = h2 + . . . such that

f ∗ω2 = dh2

f ∗ω3 = ddRh2 + dh1

· · ·

In particular, f ∗ω2 ∈ A2(L, n) is nullhomotopic. If we assume both L and X are derived
Artin stacks locally of finite presentation, we get a nullhomotopy of the composite

TL −→ f ∗TX
ω]−→ f ∗LX [n] −→ LL[n].



14 PAVEL SAFRONOV

Definition 2.18. Let f : L → X be a morphism of derived Artin stacks locally of finite
presentation where X is equipped with an n-shifted symplectic structure ω. An n-shifted
Lagrangian structure on f is an isotropic structure on f such that
(4) TL −→ f ∗TX −→ LL[n]

is a fiber sequence.

Example 2.19. Let (X,ω) be a smooth symplectic scheme considered as a 0-shifted symplectic
scheme and i : L ↪→ X a smooth subscheme. Possible 0-shifted isotropic structures on i are
given by a power series h = h2 + . . . . But the degrees of hk are all negative, so hk = 0. Thus,
i carries a 0-shifted isotropic structure iff ω|L = 0, i.e. L is an ordinary isotropic subscheme,
in which case it is unique. As we have observed above, the 0-shifted isotropic structure is
Lagrangian iff dim(L) = dim(X)/2.

Example 2.20. The point pt carries a unique n-shifted symplectic structure for any n: indeed,
DR(pt) is zero in positive weights and Tpt

∼= Lpt
∼= 0. For any derived prestack X there is

a unique map p : X → pt. An n-shifted isotropic structure on p is a nullhomotopy of p∗0 in
A2,cl(X,n), i.e. a closed two-form h of degree (n− 1). The sequence (4) becomes

TX −→ 0 −→ LX [n]

which is a fiber sequence iff h] : TX → LX [n − 1] is an equivalence, i.e. iff h defines an
(n− 1)-shifted symplectic structure on X.

An important example of a shifted Lagrangian structure is given by the following statement
(see [Cal15]).

Let X be a smooth symplectic scheme equipped with a G-action which preserves the
symplectic structure. Recall that a G-equivariant map µ : X → g∗ is called a moment map
for the G-action on X if for every v ∈ g we have

ιa(v)ω = ddRµ(v),

where a : g→ Γ(X,TX) is the infinitesimal action map.

Theorem 2.21. Let G be a reductive algebraic group, X a smooth G-scheme and µ : X → g∗

a G-equivariant map which induces the map [µ] : X/G → g∗/G after quotienting by G.
Then the space of 1-shifted Lagrangian structure on [µ] is equivalent to the set of symplectic
structures on X for which µ is a moment map.

Remark 2.22. Recall that a derived prestack X with a G-action may be encoded in the
projection p : X/G → BG. The data of a moment map is then a lift of X/G → BG to a
1-shifted Lagrangian map X/G→ g∗/G.

An important construction with shifted Lagrangian structures is their intersection. Recall
that for a diagram of sets L1 → X ← L2 their intersection is the same as the fiber product
L1×X L2. In a similar way, if L1, L2 and X are schemes, their schematic intersection is given
by the fiber product.

Theorem 2.23. Suppose L1 → X ← L2 is a diagram of derived prestacks where X is
equipped with an n-shifted symplectic structure ω and f1 : L1 → X and f2 : L2 → X are
equipped with n-shifted Lagrangian structures. Then L1 ×X L2 carries a natural (n − 1)-
shifted symplectic structure.
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Proof. Consider a pullback diagram

L1 ×X L2
g1 //

g2
��

L1

f1
��

L2
f2 // X

The n-shifted Lagrangian structure on f1 gives a nullhomotopy f ∗1ω ∼ 0 in A2,cl(L1, n)
hence a nullhomotopy g∗1f ∗1ω ∼ 0 in A2,cl(L1 ×X L2, n). In a similar way, from L2 we get
a nullhomotopy g∗2f ∗2ω ∼ 0 in the same space. But since the above diagram commutes, we
also have a homotopy g∗1f ∗1 ∼ g∗2f

∗
2ω. Thus, we obtain a composite homotopy
0 ∼ g∗1f

∗
1ω ∼ g∗2f

∗
2ω ∼ 0

in A2,cl(L1 ×X L2, n). Such a homotopy from 0 to 0 in A2,cl(L1 ×X L2, n) is given by an
element h = h2 + . . . which satisfies 0− 0 = (d + ddR)h, i.e. h ∈ A2,cl(L1×X L2, n− 1). The
fact that h is nondegenerate follows from the nondegeneracy of f1 and f2 for which we refer
to [Pan+13, Theorem 2.9]. �

Example 2.24. Recall from theorem 2.21 that if X is a symplectic scheme equipped with a
G-action and a moment map µ : X → g∗, then X/G→ g∗/G carries a 1-shifted Lagrangian
structure. For instance, taking X = pt and µ : pt→ g∗ given by the inclusion of the origin,
we get a 1-shifted Lagrangian structure on BG = pt/G→ g∗/G. Therefore, by theorem 2.23
we get a 0-shifted symplectic structure on

X/G×g∗/G BG ∼= (X ×g∗ pt)/G = µ−1(0)/G.

This space is known as the symplectic reduction of X by G.

Example 2.25. Suppose f : L → X is a morphism of derived Artin stacks locally of finite
presentation. The n-shifted conormal stack N∗[n](L/X) → L is defined to be the total
space of the perfect complex LL/X [n− 1] ∈ Perf(L). We have a fiber sequence

f ∗LX −→ LL −→ LL/X
which after rotation and shifting gives rise to a morphism LL/X [n−1]→ f ∗LX [n]. Therefore,
on the level of total spaces there is a natural morphism f̃ : N∗[n](L/X) −→ T∗[n]X.

Proceeding as in example 2.15 we may obtain a nullhomotopy of f̃ ∗λ, the pullback of
the Liuoville one-form. Therefore, f̃ carries a natural n-shifted isotropic structure. It is
moreover shown in [Cal19] that it is in fact n-shifted Lagrangian.

An important idea going back to Weinstein [Wei82] is that Lagrangians can be considered
as morphisms between symplectic manifolds. For a derived prestack X equipped with an
n-shifted symplectic structure we denote by X the same derived prestack with the opposite
shifted n-symplectic structure.

Definition 2.26. Let X and Y be n-shifted symplectic derived prestacks. An n-shifted
Lagrangian correspondence X ← L → Y from X to Y is an n-shifted Lagrangian
structure on L→ X × Y .

We can organize Lagrangian correspondences into an ∞-category:
• Its objects are derived prestacks equipped with an n-shifted symplectic structure.
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• Morphisms from X to Y are given by n-shifted Lagrangian correspondences X ←
L→ Y .
• A composition of two Lagrangian correspondences X ← L1 → Y and Y ← L2 → Z
is given by the pullback

L1 ×Y L2

zz $$
L1

~~ %%

L2

zz   
X Y Z

and a variant of theorem 2.23 shows that X ← L1 ×Y L2 → Z is an n-shifted
Lagrangian correspondence.

Such an ∞-category has been constructed in [Hau18]. One can moreover extend it to a
higher category by considering iterated Lagrangian correspondences. Namely, givenX and Y
equipped with n-shifted symplectic structures and two n-shifted Lagrangian correspondences
X ← L1 → Y and X ← L2 → Y a 2-morphism is given by a correspondence L1 ← Z → L2

such that Z → L1 ×X×Y L2 is equipped with an (n − 1)-shifted Lagrangian structure.
In this way one may construct an (∞, n)-category of Lagrangian correspondences. Such a
construction will appear in the upcoming work [CHS19], see also [AB17] where the homotopy
2-category of n-shifted Lagrangian correspondences is constructed.

2.5. AKSZ construction. Let C be a smooth projective variety of dimension d and X a
derived Artin stack locally of finite presentation. Recall that the mapping stack Map(C,X)
admits a cotangent complex, so that for f ∈ Map(C,X)(R) we have

f ∗TMap(C,X)
∼= Γ(C, f ∗TX).

In particular,

(5) f ∗LMap(C,X)
∼= Γ(C, f ∗TX)∨ ∼= Γ(C, f ∗LX ⊗KC [−d]),

where KC is the canonical bundle of C and we have used the Serre duality in the last
equivalence.

Now suppose C is Calabi-Yau, i.e. KC
∼= OC , and fix a one-form ω ∈ Γ(X,LX)[n] of

degree n. Using the equivalence (5) we obtain a one-form on Map(C,X) of degree n − d.
This can be generalized to forms of higher weights.

Theorem 2.27. Let C be a smooth projective variety of dimension d equipped with a trivi-
alization KC

∼= OC and X an n-shifted symplectic stack. Then Map(C,X) admits a natural
(n− d)-shifted symplectic structure.

Remark 2.28. The above theorem was proven in [Pan+13, Theorem 2.5] following a differential-
geometric construction given in [Ale+97].

A variant of theorem 2.27 also works for Lagrangian maps.
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Theorem 2.29. Let C and X be as before and f : L → X a map of derived prestacks
equipped with an n-shifted Lagrangian structure. Then

Map(C,L) −→ Map(C,X)

admits a natural (n− d)-shifted Lagrangian structure.

2.6. Exercises.
(1) Let G be a reductive algebraic group. Describe the spaces of differential forms

Ap,cl(BG, n) and Ap(BG, n) for n > p.
(2) (*) Let G be a not necessarily reductive algebraic group. Show that 2-shfited sym-

plectic structures on BG coincide with nondegenerate G-invariant symmetric bilinear
pairings on g.

(3) Let G be a reductive algebraic group. Write down a representative of the Liouville
one-form λ in the Cartan model of equivariant cohomology DRCartan(BG). Check
explicitly that ddRλ is nondegenerate.

(4) Prove theorem 2.21.

3. Shifted Poisson structures in representation theory

3.1. Shifted Poisson structures. Let X be a smooth scheme. Consider the algebra
of polyvector fields Γ(X,∧•TX); we will call the grading on the exterior algebra as the
weight grading by analogy with differential forms. This vector space has a Lie bracket (the
Schouten bracket) which has weight −1, i.e. the Lie bracket of a p-vector and a q-vector
is a (p + q − 1)-vector. Recall that a Poisson structure on X is a bivector π ∈ Γ(X,∧2TX)
such that [π, π] = 0.

Let us also recall that a symplectic structure on X is an example of a Poisson structure:
given a nondegenerate Poisson structure, i.e. one which induces an isomorphism π] : T∗X →
TX , there is a unique symplectic structure ω such that ω] : TX → T∗X is inverse to π].

(Shifted) Poisson structures on stacks are defined in a similar way. We will only give a
flavor of the definition of shifted Poisson structures without going into all the details (the
precise definition is developed in [Cal+17] and [Pri17]). Let X be a derived Artin stack
locally of finite presentation with the tangent complex TX ∈ Perf(X). Consider the algebra
of n-shifted polyvector fields

Pol(X,n) = Γ(X, Sym(TX [−n− 1])).

As for differential forms, it has two gradings:
• Weight grading such that TX has weight 1.
• Internal cohomological grading.

Example 3.1. Let X be a smooth affine scheme and consider n = 0. Then we may identify
Symn(TX [−1]) ∼= ∧nTX [−n], so the two gradings coincide and the algebra Pol(X, 0) coincides
with the usual algebra of polyvector fields.

One may define an analog of the Schouten bracket on Pol(X,n) which has weight −1 and
degree −n− 1.
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Definition 3.2. Let X be a derived Artin stack locally of finite presentation. An n-shifted
Poisson structure on X is a formal power series π = π2 +π3 + . . . , where πk is an element
of Pol(X,n) of weight k and degree n+ 2 such that π satisfies the Maurer–Cartan equation
dπ + 1

2
[π, π] = 0.

Remark 3.3. We may split the Maurer–Cartan equation according to weights as follows:

dπ2 = 0

dπ3 +
1

2
[π2, π2] = 0

· · ·

In other words, π2 is a d-closed bivector, such that [π2, π2] is homotopic to zero in a coherent
way.

Instead of using a precise definition, in these notes we will only use some properties that
they have:

• IfX is a smooth scheme, a 0-shifted Poisson structure onX is the same as an ordinary
Poisson structure.
• If X is a derived prestack, an n-shifted Poisson structure on X has an underlying

d-closed bivector π ∈ Γ(X, Sym2(TX [−n − 1]))[n + 2] which induces a chain map
π] : LX → TX [−n].
• IfX has an n-shifted symplectic structure ω, it also has an n-shifted Poisson structure
π such that π] : LX → TX [−n] is inverse to ω] : TX → LX [n].
• If f : L→ X has an n-shifted Lagrangian structure, there is an (n−1)-shifted Poisson
structure on L. The underlying bivector can be extracted as follows. Recall that an
n-shifted Lagrangian structure gives rise to a fiber sequence (4)

TL −→ f ∗TX −→ LL[n].

The connecting homomorphism gives rise to a map π] : LL → TL[1− n] which is the
underlying bivector of the (n − 1)-shifted Poisson structure. The symplectic leaves
of the (n− 1)-shifted Poisson structure on L are given by the fibers of L→ X.

We can relate this property to the previous property as follows. Recall from ex-
ample 2.20 that an n-shifted Lagrangian structure on p : X → pt is the same as an
(n − 1)-shifted symplectic structure on X. The underlying (n − 1)-shifted Poisson
structure on this Lagrangian is then inverse to the (n−1)-shifted symplectic structure
on X.

We will mostly consider examples of 0-shifted Poisson structures on smooth schemes, so
these properties will be enough to determine everything.

Example 3.4. Let us begin with the simplest example where we use these properties. Let G
be an affine algebraic group and recall from example 2.15 that g∗/G ∼= T∗[1](BG) carries a 1-
shifted symplectic structure. Taking the 1-shifted conormal stack of the projection pt→ BG
by example 2.25 we obtain a 1-shifted Lagrangian structure on N∗[1](pt/BG)→ T∗[1](BG)
which can be identified with the projection p : g∗ → g∗/G. Therefore, there is an underlying
Poisson structure on g∗ which we are going to compute.



SHIFTED POISSON STRUCTURES IN REPRESENTATION THEORY 19

Recall that QCoh(g∗/G) is equivalent to the ∞-category of complexes of G-equivariant
quasi-coherent sheaves on g∗. We may identify the tangent complex of g∗/G with the two-
term complex

Tg∗/G = (g⊗ Og∗ −→ g∗ ⊗ Og∗).

The differential sends v ∈ g at a point x ∈ g∗ to coadv(x), the coadjoint action of v on x.
For a vector space V let us denote by V = V ⊗Og∗ the corresponding trivial vector bundle

on g∗. The fiber sequence (4) associated to the 1-shifted Lagrangian g∗ → g∗/G is
g∗ −→ (g→ g∗) −→ g[1],

where both maps are the obvious projections.
The connecting homomorphism is computed as follows. Fix an element v ∈ g lying over

a point x ∈ g∗. It can be lifted to the element (v, 0) ∈ (g[1] ⊕ g∗). We have d(v, 0) =
(0, coadv(x)) which comes from the element coadv(x) ∈ g∗. Thus,

π] : g⊗ Og∗ −→ g∗ ⊗ Og∗

is given by π]x(v) = coadv(x).
Recall that g∗ has the Kirillov–Kostant–Souriau Poisson structure which is uniquely spec-

ified on linear functions on g∗, i.e. on g, to be the Lie bracket. It is not difficult to see that
the Poisson structure we have computed above is the same as the Kirillov–Kostant–Souriau
one. Moreover, from the general construction we know that the symplectic leaves of the
Poisson structure on g∗ are given by the fibers of g∗ → g∗/G as expected.

3.2. Springer resolution. Let G be a complex semisimple group. We refer to [CG10,
Chapter 3] for some ideas explained here (see also [BN13] and [Saf17b] for the derived
perspective).

Definition 3.5. The Grothendieck–Springer resolution g̃ is the variety parametrizing
Borel subgroups B ⊂ G equipped with an element x ∈ Lie(B).

We have a natural G-action on g̃ given by g(B, x) = (gBg−1,Adg(x)) and there is a natural
G-equivariant projection g̃→ g given by (B, x) 7→ x.

Let N ⊂ g be the nilpotent cone, i.e. the subvariety of nilpotent elements of g.

Definition 3.6. The Springer resolution Ñ → N is the variety parametrizing Borel
subgroups B ⊂ G with unipotent radical N ⊂ B and an element x ∈ Lie(N).

Let us fix a Borel subgroup B ⊂ G with unipotent radical N ⊂ B and let H = B/[B,B]
be the maximal torus. We get a natural correspondence capturing parabolic induction

BB

|| ""
BG BH

Lemma 3.7. The 1-shifted conormal stack of BB → BG× BH is equivalent to g̃/G.

Proof. We have an exact sequence of B-representations
0 −→ b −→ g⊕ h −→ b∗ −→ 0,

so N∗[1](BB/BG×BH) ∼= b/B. But we may identify g̃ ∼= G×B b which gives the result. �
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Remark 3.8. In a similar way, the 1-shifted conormal stack of BB → BG is equivalent to
Ñ/G.

Thus, taking the 1-shifted conormal stack we obtain a 1-shifted Lagrangian correspondence

(6) g̃/G

|| ##
g∗/G h∗/H

This correspondence allows one to turn 1-shifted Lagrangians in g∗/G into 1-shifted La-
grangians in h∗/H by sending L→ g∗/G to

L×g∗/G g̃/G −→ h∗/H.

Recall that by theorem 2.21 Lagrangians in g∗/G are the same as Hamiltonian G-varieties.
The above procedure of turning a Hamiltonian G-variety into a Hamiltonian H-variety is
known as symplectic implosion [DKS13].

Composing the correspondence (6) with its opposite we obtain a correspondence

(g̃×g g̃)/G

yy %%
h∗/H h∗/H

Its image in h∗ × h∗ is given by the graph of the Weyl group action. In particular,
restricting to (0, 0) ∈ h∗ × h∗ (equivalently, taking the Hamiltonian reduction by H), we
obtain a 0-shifted symplectic stack St/G, where St = Ñ ×g Ñ is known as the Steinberg
variety .

3.3. Manin triples. In this section we interpret Manin triples in terms of shifted symplectic
structures.

Definition 3.9. A Manin triple is a triple (D,G,G∗), where D is an algebraic group,
d = Lie(D) is equipped with a nondegenerate D-invariant symmetric bilinear pairing (−,−),
G,G∗ ⊂ D are subgroups such that g = Lie(G), g∗ = Lie(G∗) ⊂ d are Lagrangian and
g ∩ g∗ = 0.

Remark 3.10. Usually a Manin triple is defined as a triple of Lie algebras as above.

Note that the complementarity condition implies that the map Lie(G∗) → Lie(G)∗ given
by v ∈ Lie(G∗) 7→ (w ∈ Lie(G)∗ 7→ (w, v)) is an isomorphism. In other words, Lie(G∗) is
canonically dual to Lie(G) which explains the notation.

Since g∗ has a Lie bracket, g has a Lie cobracket. Moreover, it is a standard fact that it
is compatible with the original Lie bracket on g, so that g in fact becomes a Lie bialgebra.

Example 3.11. Let G be a complex semisimple group, B+, B− ⊂ G are two opposite Borel
subgroups and H = B+∩B− the maximal torus. Denote by p± : B± → H the abelianization
maps. Consider D = G×G with the pairing on its Lie algebra given by

((x1, y1), (x2, y2)) = (x1, y2)g + (y1, x2)g,
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for xi, yi ∈ g and where we denote by (−,−)g the Killing form on g. Then the diagonal
subgroup G ⊂ D is clearly Lagrangian. We define the subgroup G∗ ⊂ D as

G∗ = {(b+, b−) ∈ B+ ×B− | p+(b+)p−(b−) = e}.

This Manin triple defines the so-called standard Lie bialgebra structure on the semisimple
Lie algebra g.

Recall from example 2.14 that the nondegenerate pairing on d gives rise to a 2-shifted
symplectic structure on BD. Since g, g∗ ⊂ d are Lagrangians, we obtain natural 2-shifted
Lagrangian structures on BG,BG∗ → BD. Finally, complementarity condition may be
encoded as follows. BG ×BD BG∗ is a Lagrangian intersection, so by theorem 2.23 it has a
1-shifted symplectic structure. Then the complementarity condition is equivalent to the fact
that the natural projection pt→ BG×BD BG∗ is 1-shifted Lagrangian.

In terms of the 2-category of 2-shifted Lagrangian correspondences, we have encoded a
Manin triple into a 2-morhpism

(7) pt
BG

**

BG∗
44�� pt BD

We may construct some new 2-morphisms in the following way.
(1) Let us compose the 2-morphism (7) with its opposite. We get

pt

BG

%%�� pt

::

BG

�� pt

BG∗
// BD = pt

BG
**

BG

44��G∗ BD

and

pt

BG∗

%%�� pt

::

BG∗
�� pt

BG // BD = pt
BG∗

**

BG∗
44�� G BD

Thus, we obtain 1-shifted Lagrangian maps G∗ → BG ×BD BG ∼= G\D/G and
G → BG∗ ×BD BG∗ ∼= G∗\D/G∗. For instance, we get a Poisson structure on G
whose symplectic leaves are given parametrized by G∗\D/G∗. From the construction
one may moreover see that it is compatible with the group structure on G, i.e. it
defines a Poisson-Lie structure on G. This is known as the Sklyanin Poisson
structure . The quantizations of G∗ and G with respect to these Poisson structures
is usually denoted by Uq(g) and Oq(G).

(2) We may whisker the 2-morphism (7) with pt ← BG → BD or pt ← BG∗ → BD.
Then we get

pt
BG

**

BG∗
44�� pt BD

BG // pt = pt
G\D/G

))

G∗\D/G
55�� pt



22 PAVEL SAFRONOV

and

pt
BG

**

BG∗
44�� pt BD

BG∗
// pt = pt

G\D/G∗

))

G∗\D/G∗
55�� pt

So, we obtain 1-shifted Lagrangians D/G → G\D/G × G∗\D/G and D/G∗ →
G\D/G∗ × G∗\D/G∗. For instance, we get a Poisson structure on D/G known
as the Semenov–Tian–Shansky Poisson structure whose symplectic leaves are
parametrized by G\D/G × G∗\D/G. The quantization of D/G with respect to
this Poisson structure is given by the so-called reflection equation algebra [KS92].

Remark 3.12. In the case of the standard Manin triple (G×G,G,G∗) we obtain the Semenov–
Tian–Shansky Poisson structure on (G×G)/G ∼= G. Note that it is incompatible with the
multiplication on G.

3.4. Feigin–Odesskii Poisson structures. Let G be a complex semisimple group, B ⊂ G
a Borel subgroup and H = B/[B,B] the maximal torus. The Killing form equips BG with a
2-shifted symplectic structure and the restriction of the Killing form to H equips BH with
a 2-shifted symplectic structure. The exact sequence

0 −→ b −→ g∗ ⊕ h∗ −→ b∗ −→ 0

implies that we have a natural 2-shifted Lagrangian correspondence

BB

|| ""
BG BH

Now let E be an elliptic curve. Applying Map(E,−) to the above correspondence by
theorem 2.29 we obtain a 1-shifted Lagrangian correspondence

BunB(E)

xx &&
BunG(E) BunH(E)

Now fix an H-bundle L→ E. Let BunB(E,L) be the fiber of BunB(E) at L ∈ BunH(E).
We obtain 1-shifted Lagrangian structures on the maps BunB(E) → BunG(E) × BunH(E)
and BunB(E,L) −→ BunG(E) and hence Poisson structures on BunB(E) and BunB(E,L).
These Poisson structures are known as the Feigin–Odesskii Poisson structures .

Remark 3.13. Explicitly, the Poisson structure on BunB(E) has the following description
[FO98]. For a B-bundle P → E we have identifications

TBunB(E),P
∼= Γ(E, adP )[1], LBunB(E),P

∼= Γ(E, coadP ).

We have an exact sequence of B-representations

0 −→ b −→ g∗ ⊕ h∗ −→ b∗ −→ 0,
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so the connecting homomorphism. In particular, the connecting homomorphism gives rise
to a morphism b∗ → b[1] in the derived category of B-representations. Therefore, we get a
map

Γ(E,P ×B b∗) −→ Γ(E,P ×B b[1])

which is the Poisson bivector π] : LBunB(E),P → TBunB(E),P .

Example 3.14. Let G = PGL2, so that an H-bundle is a line bundle L→ E and a B-bundle
is an extension

0 −→ L −→ V −→ O −→ 0.

If deg(L) ≤ 0, we may identify

BunB(E,L) ∼= H0(E,L∗)/Gm.

In particular, removing the origin we obtain a Poisson structure on P(H0(E,L∗)). By the
Riemann–Roch theorem we have dim H0(E,L∗) = − deg(L). In particular, for deg(L) = −3
we obtain a Poisson structure on P2 and for deg(L) = −4 we obtain a Poisson structure
on P3. These two Poisson structures were previously defined by Sklyanin [Skl82] and their
quantizations give rise to the 3- and 4-dimensional Sklyanin algebras.

3.5. Exercises.
(1) Let G be a complex semisimple group and consider the standard Manin triple (G×

G,G,G∗). Find the symplectic leaves of G with respect to the Sklyanin Poisson
structure with double Bruhat cells.

(2) Let G be a complex semisimple group, B+, B− ⊂ G a pair of opposite Borel subgroups
and H = B+ ∩ B−. Let N+ ⊂ B+ be the unipotent radical. Find the symplectic
leaves of the Semenov–Tian–Shansky Poisson structure on G/N+ with respect to the
Manin triple (G×H,B+, B−).

(3) Classify Poisson structures on P2 with a smooth degeneracy locus and relate them
to the Sklyanin Poisson structure.
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